SAFETY PRECAUTIONS

VRLA (Valve Regulated Lead-Acid) batteries have the electrolyte immobilized within the battery; however, electrical hazard associated with batteries still exists. Work performed on these batteries should be done with the tools and the protective equipment listed below. VRLA battery installations should be supervised by personnel familiar with batteries and battery safety precautions.

WARNING: Risk of fire, explosion or burns. Do not disassemble, heat above 40°C, or incinerate.

STANDBY BATTERY INSTALLATION AND OPERATING INSTRUCTIONS

IN REFERENCE TO THIS MANUAL:
- “Battery” is defined as an individual 12-volt unit.
- “Battery string” is defined as a series connected electrical system comprised of batteries (individual 12-volt units).

SAFETY PRECAUTIONS

VRLA (Valve Regulated Lead-Acid) batteries have the electrolyte immobilized within the battery; however, electrical hazard associated with batteries still exists. Work performed on these batteries should be done with the tools and the protective equipment listed below. VRLA battery installations should be supervised by personnel familiar with batteries and battery safety precautions.

WARNING: Risk of fire, explosion or burns. Do not disassemble, heat above 40°C, or incinerate.

Protective Equipment

Although VRLA batteries can vent or leak small amounts of electrolyte, electrical safety is the principal but not the only concern for safe handling. Per IEEE 1188 recommendations, the following minimum set of equipment for safe handling of the battery and protection of personnel shall be available:

1. Safety glasses with side shields, or goggles, or face shields as appropriate. (Consult application specific requirements)
2. Electrically insulated gloves, appropriate for the installation.
3. Protective aprons and safety shoes.
4. Portable or stationary water facilities in the battery vicinity for rinsing eyes and skin in case of contact with acid electrolyte.
5. Class C fire extinguisher.
6. Acid neutralizing agent.
7. Adequately insulated tools. (as defined by IEEE 1188)
8. Lifting devices of adequate capacity, when required.
Procedures

The following safety procedures should be followed during installation:

(A) Always wear safety glasses with side shields or face shield goggles when working on or near batteries.

1. These batteries are sealed and contain no free electrolyte. Under normal operating conditions, they do not present any sulfuric acid danger. However, if the battery case or cover is damaged, sulfuric acid could be present. Sulfuric acid is harmful to the skin and eyes. Flush affected area with water immediately and consult a physician if splashed in the eyes.

Consult SDS for additional precautions and first aid measures. SDS sheets can be obtained at www.eastpennmanufacturing.com

2. Prohibit smoking and open flames, and avoid arcing in the immediate vicinity of the battery.

3. Do not wear metallic objects, such as jewelry or key chains, while working on batteries. Do not store uninsulated tools in pockets or tool belt while working in vicinity of battery.

4. Keep the top of the battery dry and clear of tools and other foreign objects.

5. Provide adequate ventilation (per IEEE standard 1187 and/or Federal, State & Local codes) and follow recommended charging voltages.

6. Never remove or tamper with the pressure relief valves. Warranty void if vent valve is removed.

7. Inspect all flooring and lifting equipment for functional adequacy.

8. Connect support structures to ground system in accordance with applicable codes.

9. The below IEEE Standards contain additional information. Other standards may be relevant to your specific application.

IEEE 1187 – Recommended Practice for Installation Design of VRLA Batteries

IEEE 1188 – Recommended Practice for Maintenance, Testing, of VRLA Batteries

IEEE 1189 – Selection of VRLA Batteries for Stationary Applications

RECEIVING & STORAGE

Receiving Inspection

Upon receipt, and at the time of actual unloading, each package should be visually inspected for any possible damage or electrolyte leakage. If either is evident, a more detailed inspection of the entire shipment should be conducted and noted on the bill of lading. Record receipt date, inspection data and notify carrier of any damage.

Unpacking

1. Always wear eye protection.

2. Check all batteries for visible defects such as cracked containers, loose terminal posts, or other unrepairable problems. Batteries with these defects must be replaced.

3. Check the contents of the packages against the packaging list. Report any missing parts or shipping damage to your East Penn agent or East Penn Mfg. Co. immediately.

4. Never lift batteries by the terminal posts.

Storage

1. Batteries should be stored indoors in a clean, level, dry, cool location. Recommended storage temperature is 0°F to 90°F (−18°C to 32°C).

2. Stored lead-acid batteries self discharge and must be given a boost charge to prevent permanent performance degradation.

0°F to 77°F (−18°C to 25°C) storage:

Batteries should be recharged six months from date of manufacture.

>77°F (25°C) storage:

Use the chart below for recharge intervals. Voltage readings should be taken on a monthly basis. Batteries that reach 12.60V per battery should be recharged regardless of scheduled interval. Record dates and conditions for all charges during storage.

3. If a boost charge is required: the recommended charge is 24 hours at a constant voltage equal to 14.40V per battery.

4. Do not store beyond 12 months.

Fig. 2 Recharge Interval Chart
INSTALLATION

General
Caution should be taken when installing batteries to insure no damage occurs. The battery string cabinet, tray, rack, etc. shall be inspected for sharp edges that could cause damage to the battery casing. Batteries shall not be dropped, slid, or placed on rough or uneven surfaces such as tray lips or grated flooring. Mishandling of batteries could result in equipment damage or human injury. East Penn will not be liable for damage or injury as a result of mishandling or misuse of the product.

Grounding
When grounding the battery string, proper techniques should be applied per electrical standards such as NEC and/or Federal, State and Local codes, as well as User Manual of specific application.

Cabinets
Cabinet systems come factory assembled and prewired. Do not tip or turn cabinets on their sides when positioning them in their intended installation area. Cabinets must be used in an upright position. These systems are preconnected. Only inter-shelf, inter-cabinet and connections to the load are required. See the connection diagram inside the cabinet. Inter-cabinet and load connection cables are not included.

Racks
Assemble racks in accordance with the intended arrangement, align with a level and bolt to the floor. See rack assembly instructions.

UNIGY I BATTERIES ARE TESTED AND APPROVED TO BE INSTALLED AND OPERATED IN THEIR UPRIGHT POSITION.

TOP TERMINAL BATTERY FRONT TERMINAL BATTERY

FOR ANY OTHER INSTALLATION ORIENTATION, THE PRODUCT WILL NOT BE WARRANTED.
SYSTEM OPERATIONS

Charger Voltage
These batteries are designed for continuous float applications.

Charger Current
Charge current should not exceed the recommended min. & max. requirements.
Consult Appendix B for min. & max. charge current limits.

FLOAT / STANDBY (Per Battery)
- 13.50V ± 0.06 @ 77°F (25°C)
- 13.62V ± 0.06 @ 77°F (25°C) for 12AVR100ET

When setting the float voltage on the charger, the battery string should be set to float at the nominal battery float voltage times the number of batteries in the string. The charger must be able to maintain the system voltage within ±0.5% of the desired level at all times. The desired float voltage varies with temperature. Consult Voltage Compensation Chart (Pg. 6 – Appendix A).

TEMPERATURE COMPENSATION
Battery voltage should be adjusted for ambient temperature variations.
12mV per °C (1.8°F) per 12V battery
Consult Voltage Compensation Chart (Pg. 6 – Appendix A) for temperature compensation voltage maximum and minimum limits.

Battery Voltage
Although the charger must maintain the system voltage within ±0.5%, individual battery voltages may vary by ±0.30V per battery of the average battery string float voltage.

Equalizing
Upon installation of the battery string, an optional charge of 14.40V per battery ± 0.06 @ 77°F (25°C) for 24 hours (not to exceed 24 hours) can be applied. (NOTE: Verify that the higher battery voltage will not adversely affect any other connected equipment). If this is done, be sure to reset the charging equipment to the proper float voltage.

Battery Operation
Battery operating temperature will affect battery string capacity and operating life.
Temperatures greater than 77°F (25°C) will reduce the operating life of the battery. For every 13°F (7°C) increase in operating temperature above 77°F (25°C), the warranty period will be proportionally reduced by 50% as shown below:

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>Proportional Percentage (%) of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
</tr>
<tr>
<td>81</td>
<td>27</td>
</tr>
<tr>
<td>87</td>
<td>30</td>
</tr>
<tr>
<td>90</td>
<td>32</td>
</tr>
</tbody>
</table>

BATTERY ASSEMBLY

(ONLY WEAR EYE PROTECTION.)

1. Set up the battery string so that the positive post (+) of one battery is connected to the negative post (–) of the next battery for all series connections.

2. For future identification, individual batteries should be numbered in electrical connection sequence, beginning with number one (1) at the positive end of the battery string.

3. The interbattery connector contact surfaces shall be cleaned by rubbing gently with a non-metallic brush or pad before installing connectors. Only approved oxide inhibitors may be applied to connectors or battery posts.

4. Install all interbattery connectors using lockwasher and bolts loosely to allow for final alignment of batteries, then torque. (Reference Table 1 for correct torque/retorque values.)

DO NOT OVERTORQUE. Some batteries have cable harnesses (torque value is 45 ± 5).

Table 1 — Torque/Retorque Values

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Torque/Retorque inch lbs (newton meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12AVR30/40</td>
<td>45 ± 5 (5.1 ± .5)</td>
</tr>
<tr>
<td>All types except: 12AVR30/40</td>
<td>100 ± 5 (11.3 ± .5)</td>
</tr>
</tbody>
</table>

5. After torquing the connections on racked batteries, read the voltage of the battery string to assure that individual batteries are connected correctly. The total voltage should be approximately equal to the number of batteries times the measured voltage of one battery (when connected in series). If the measurement is less, recheck the connections for proper voltage and polarity.

6. Read and record interbattery connection resistance and note the method of measurement. This helps determine a satisfactory initial installation and can be used as a reference for future maintenance requirements. See Battery Maintenance Report (Pg. 8 – Appendix C)

Clean, remake and remake any connection having a resistance measurement greater than 10% of the average of all the same type of connections (interbattery, inter-tier or shelf, inter-rack or inter-cabinet).

7. Battery performance is based on the output at the battery terminals. Therefore, the shortest electrical connections between the battery string and the operating equipment results in maximum total battery string performance.

Do not select cable size on current carrying capability only. Cable size should not provide a greater voltage drop between the battery system and operating equipment than specified. Excess voltage drop will reduce the desired support time of the battery system.

(1) Approved oxide inhibitors:
No-Ox-ID “A” from Sanchen Inc.
Battery Operation (Continued)

The battery string operating temperature should not exceed 95°F (35°C) and should never exceed 105°F (40.5°C) for more than an eight-hour period. If operating temperatures are expected to be in excess of 95°F (35°C), contact East Penn for recommendations.

Discharging at temperatures less than 77°F (25°C) will reduce the capacity of the battery. If operating temperatures are expected to be less than 50°F (10°C), contact East Penn for recommendations.

The battery string must be located in a manner that the individual batteries do not vary by more than 5°F (2.8°C) between the lowest and highest individual battery temperatures.

Rectifier Ripple Voltage

FREQUENCY

Ripple that has a frequency greater than 667Hz (duration less than 1.5ms) is acceptable, unless it is causing additional battery heating.

Ripple that has a frequency less than 667Hz (duration greater than 1.5ms), must meet the following voltage specification to be acceptable.

VOLTAGE SPECIFICATION

Ripple voltage shall be less than 0.5% peak to peak of the manufacturer’s recommended battery string voltage. Failure to comply can void the warranty.

RECORD KEEPING

Voltages, Temperatures & Ohmic READINGS

Record keeping is an important part of stationary battery maintenance and warranty coverage. This information will help in establishing a life history of the battery string and inform the user if and when corrective action needs to be taken. Consult Battery Maintenance Report (Pg.8 – Appendix C).

While it is acceptable to operate at temperatures less than 77°F (25°C), it will require longer charging time to become fully recharged. Also, the capacity will be less at operating temperatures below 77°F (25°C).

After installation and when the battery string has been on float charge for one week, the following data should be recorded:

1. Battery string voltage at battery terminals while battery is on float charge.
2. Charger voltage at charger panel meter.
3. Individual battery float voltages.
4. Ambient temperatures within area of battery string.
5. Terminal connections should be checked to verify that the installer did torque all connections properly; consult Torque/Retorque Values (Pg. 4 – Table 1) for proper torque values. Micro-ohm readings should be taken across every connection. Refer to meter manufacturer’s instructions for proper placement of probes. If any reading differs by more than 20% from its initial installation value, re-torque the connection, consult Torque/Retorque Values (Pg. 4 – Table 1) for proper torque values. If reading remains high, clean contact surfaces according to Step 2 under Battery Assembly.

Failure to maintain proper records including information as detailed above may result in voiding any applicable warranty.

MAINTENANCE

Always wear eye protection when working on or near batteries. Keep sparks and open flames away from batteries at all times. Review Safety Precautions (Pg. 1)

Annual Inspection (1)

1. Conduct a visual inspection of each battery.
2. Record the battery string voltage at battery terminals while battery is on float charge.
3. Record the charger voltage at charger panel meter.
4. Record the individual battery voltages. The accuracy of the DMM (Digital Multimeter) must be 0.05% (on dc scale) or better. The DMM must be calibrated to NIST traceable standards. Because float readings are affected by discharge and recharges, these readings must be taken when battery string has been on continuous, uninterrupted float for at least one month. Battery should be within ± 0.30 volts of the average battery string float voltage.
5. Record the ambient temperatures.
6. Record the battery string temperature at the negative terminal.
7. Record individual battery Ohmic readings.
8. Record all interbattery and terminal connection resistances. Micro-ohm readings should be taken during this inspection. If any reading differs by more than 20% from initial readings taken, re-torque the connection. Retorque value is equal to initial torque value as indicated in BATTERY ASSEMBLY section. Recheck the micro-ohm reading. If the reading remains high, clean the contact surface according to installation portion of this manual.

(1) Other Maintenance Inspection intervals follow IEEE 1188

Battery Cleaning

Batteries, cabinets, and racks, should be cleaned with clear water, a mixture of baking soda and water or East Penn Mfg supplied battery cleaner (part # 00321).

Never use solvents to clean the battery.

Capacity Testing

Per IEEE 1188 “Capacity testing is used to trend battery aging. The result of a capacity test is a calculation of the capacity of the battery. The calculated capacity is also used to determine if the battery requires replacement.” When performing capacity testing and recording data refer to IEEE 1188 recommendations.

NOTE: When discharging at higher rates, extra connectors may need to be added to prevent excessive voltage drop and/or excessive temperature rise. Should it be determined that any individual battery (ies) need to be replaced, contact your nearest East Penn agent or East Penn Service Center.
APPENDIX A

VOLTAGE COMPENSATION CHART

<table>
<thead>
<tr>
<th>°C</th>
<th>All Unigy I Types except 12AVR100ET</th>
<th>12AVR100ET</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥35</td>
<td>13.38</td>
<td>13.50</td>
<td>≥95</td>
</tr>
<tr>
<td>34</td>
<td>13.39</td>
<td>13.51</td>
<td>93.2</td>
</tr>
<tr>
<td>33</td>
<td>13.40</td>
<td>13.52</td>
<td>91.4</td>
</tr>
<tr>
<td>32</td>
<td>13.42</td>
<td>13.54</td>
<td>89.6</td>
</tr>
<tr>
<td>31</td>
<td>13.43</td>
<td>13.55</td>
<td>87.8</td>
</tr>
<tr>
<td>30</td>
<td>13.44</td>
<td>13.56</td>
<td>86.0</td>
</tr>
<tr>
<td>29</td>
<td>13.45</td>
<td>13.57</td>
<td>84.2</td>
</tr>
<tr>
<td>28</td>
<td>13.46</td>
<td>13.58</td>
<td>82.4</td>
</tr>
<tr>
<td>27</td>
<td>13.48</td>
<td>13.60</td>
<td>80.6</td>
</tr>
<tr>
<td>26</td>
<td>13.49</td>
<td>13.61</td>
<td>78.8</td>
</tr>
<tr>
<td>25</td>
<td>13.50</td>
<td>13.62</td>
<td>77.0</td>
</tr>
<tr>
<td>24</td>
<td>13.51</td>
<td>13.63</td>
<td>75.2</td>
</tr>
<tr>
<td>23</td>
<td>13.52</td>
<td>13.64</td>
<td>73.4</td>
</tr>
<tr>
<td>22</td>
<td>13.54</td>
<td>13.66</td>
<td>71.6</td>
</tr>
<tr>
<td>21</td>
<td>13.55</td>
<td>13.67</td>
<td>69.8</td>
</tr>
<tr>
<td>20</td>
<td>13.56</td>
<td>13.68</td>
<td>68.0</td>
</tr>
<tr>
<td>19</td>
<td>13.57</td>
<td>13.69</td>
<td>66.2</td>
</tr>
<tr>
<td>18</td>
<td>13.58</td>
<td>13.70</td>
<td>64.4</td>
</tr>
<tr>
<td>17</td>
<td>13.60</td>
<td>13.72</td>
<td>62.6</td>
</tr>
<tr>
<td>16</td>
<td>13.61</td>
<td>13.73</td>
<td>60.8</td>
</tr>
<tr>
<td>15</td>
<td>13.62</td>
<td>13.74</td>
<td>59.0</td>
</tr>
<tr>
<td>14</td>
<td>13.63</td>
<td>13.75</td>
<td>57.2</td>
</tr>
<tr>
<td>13</td>
<td>13.64</td>
<td>13.76</td>
<td>55.4</td>
</tr>
<tr>
<td>12</td>
<td>13.66</td>
<td>13.78</td>
<td>53.6</td>
</tr>
<tr>
<td>11</td>
<td>13.67</td>
<td>13.79</td>
<td>51.8</td>
</tr>
<tr>
<td>≤10</td>
<td>13.68</td>
<td>13.80</td>
<td>≤50</td>
</tr>
</tbody>
</table>

12mV per °C per 12V battery
APPENDIX B

CHARGE CURRENT LIMITS

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Max. Charge Current (A)</th>
<th>Min. Charge Current (A)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>12AVR30</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>12AVR40</td>
<td>6.7</td>
<td>2.0</td>
</tr>
<tr>
<td>12AVR75</td>
<td>13.4</td>
<td>4.0</td>
</tr>
<tr>
<td>12AVR90</td>
<td>15.5</td>
<td>4.7</td>
</tr>
<tr>
<td>12AVR100</td>
<td>17.9</td>
<td>5.4</td>
</tr>
<tr>
<td>12AVR100ET</td>
<td>17.6</td>
<td>5.3</td>
</tr>
<tr>
<td>12AVR130</td>
<td>23.6</td>
<td>7.1</td>
</tr>
<tr>
<td>12AVR145L/LLP</td>
<td>26.6</td>
<td>8.0</td>
</tr>
<tr>
<td>12AVR145ET</td>
<td>26.3</td>
<td>7.9</td>
</tr>
<tr>
<td>12AVR150ET</td>
<td>27.1</td>
<td>8.1</td>
</tr>
<tr>
<td>12AVR170ET</td>
<td>30.8</td>
<td>9.3</td>
</tr>
<tr>
<td>12AVR200ET</td>
<td>38.3</td>
<td>11.5</td>
</tr>
</tbody>
</table>

** = Using minimum charge current will extend recharge time and increase risk of battery being undercharged
APPENDIX C

BATTERY MAINTENANCE REPORT

Inspection Date ___

No. of Units/String _______________________

Company ____________________________ Type ____________________________

Address ____________________________ Date New ____________________________

Battery location and/or number ___

Date Installed ____________________________

Individual Battery Readings

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Volts</th>
<th>Ohms or Mhos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>81</td>
<td>2</td>
<td>42</td>
<td>82</td>
<td>3</td>
<td>43</td>
<td>83</td>
<td>4</td>
<td>44</td>
<td>84</td>
<td>5</td>
<td>45</td>
<td>85</td>
<td>6</td>
<td>46</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>47</td>
<td>87</td>
<td>8</td>
<td>48</td>
<td>88</td>
<td>9</td>
<td>49</td>
<td>89</td>
<td>10</td>
<td>50</td>
<td>90</td>
<td>11</td>
<td>51</td>
<td>91</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>92</td>
<td>13</td>
<td>53</td>
<td>93</td>
<td>14</td>
<td>54</td>
<td>94</td>
<td>15</td>
<td>55</td>
<td>95</td>
<td>16</td>
<td>56</td>
<td>96</td>
<td>17</td>
<td>57</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>58</td>
<td>98</td>
<td>19</td>
<td>59</td>
<td>99</td>
<td>20</td>
<td>60</td>
<td>100</td>
<td>21</td>
<td>61</td>
<td>101</td>
<td>22</td>
<td>62</td>
<td>102</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23</td>
<td>63</td>
<td>103</td>
<td>24</td>
<td>64</td>
<td>104</td>
<td>25</td>
<td>65</td>
<td>105</td>
<td>26</td>
<td>66</td>
<td>106</td>
<td>27</td>
<td>67</td>
<td>107</td>
<td>28</td>
<td>68</td>
<td>108</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>29</td>
<td>69</td>
<td>109</td>
<td>30</td>
<td>70</td>
<td>110</td>
<td>31</td>
<td>71</td>
<td>111</td>
<td>32</td>
<td>72</td>
<td>112</td>
<td>33</td>
<td>73</td>
<td>113</td>
<td>34</td>
<td>74</td>
<td>114</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>35</td>
<td>75</td>
<td>115</td>
<td>36</td>
<td>76</td>
<td>116</td>
<td>37</td>
<td>77</td>
<td>117</td>
<td>38</td>
<td>78</td>
<td>118</td>
<td>39</td>
<td>79</td>
<td>119</td>
<td>40</td>
<td>80</td>
<td>120</td>
</tr>
</tbody>
</table>

Readings Taken By ____________________________ Remarks/Recommendations ____________________________

Readings should be taken at installation and annually thereafter.

E.P.M. Form No. 0902 Rev. 12/16 © 2016 by EPM Printed in U.S.A.

East Penn Manufacturing Co.
Lyon Station, PA 19536-0147
Phone: 610-682-3263 Fax: 610-682-0891

e-mail: reservepowersales@dekabatteries.com www.dekabatteries.com

All data subject to change without notice. No part of this document may be copied or reproduced, electronically or mechanically, without written permission from the company.